Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
JAMA Neurol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497971

ABSTRACT

Importance: Rapid and accurate diagnosis of autoimmune encephalitis encourages prompt initiation of immunotherapy toward improved patient outcomes. However, clinical features alone may not sufficiently narrow the differential diagnosis, and awaiting autoantibody results can delay immunotherapy. Objective: To identify simple magnetic resonance imaging (MRI) characteristics that accurately distinguish 2 common forms of autoimmune encephalitis, LGI1- and CASPR2-antibody encephalitis (LGI1/CASPR2-Ab-E), from 2 major differential diagnoses, viral encephalitis (VE) and Creutzfeldt-Jakob disease (CJD). Design, Setting, and Participants: This cross-sectional study involved a retrospective, blinded analysis of the first available brain MRIs (taken 2000-2022) from 192 patients at Oxford University Hospitals in the UK and Mayo Clinic in the US. These patients had LGI1/CASPR2-Ab-E, VE, or CJD as evaluated by 2 neuroradiologists (discovery cohort; n = 87); findings were validated in an independent cohort by 3 neurologists (n = 105). Groups were statistically compared with contingency tables. Data were analyzed in 2023. Main Outcomes and Measures: MRI findings including T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensities, swelling or volume loss, presence of gadolinium contrast enhancement, and diffusion-weighted imaging changes. Correlations with clinical features. Results: Among 192 participants with MRIs reviewed, 71 were female (37%) and 121 were male (63%); the median age was 66 years (range, 19-92 years). By comparison with VE and CJD, in LGI1/CASPR2-Ab-E, T2 and/or FLAIR hyperintensities were less likely to extend outside the temporal lobe (3/42 patients [7%] vs 17/18 patients [94%] with VE; P < .001, and 3/4 patients [75%] with CJD; P = .005), less frequently exhibited swelling (12/55 [22%] with LGI1/CASPR2-Ab-E vs 13/22 [59%] with VE; P = .003), and showed no diffusion restriction (0 patients vs 16/22 [73%] with VE and 8/10 [80%] with CJD; both P < .001) and rare contrast enhancement (1/20 [5%] vs 7/17 [41%] with VE; P = .01). These findings were validated in an independent cohort and generated an area under the curve of 0.97, sensitivity of 90%, and specificity of 95% among cases with T2/FLAIR hyperintensity in the hippocampus and/or amygdala. Conclusions and Relevance: In this study, T2 and/or FLAIR hyperintensities confined to the temporal lobes, without diffusion restriction or contrast enhancement, robustly distinguished LGI1/CASPR2-Ab-E from key differential diagnoses. These observations should assist clinical decision-making toward expediting immunotherapy. Their generalizability to other forms of autoimmune encephalitis and VE should be examined in future studies.

2.
Brain Behav Immun ; 115: 718-726, 2024 01.
Article in English | MEDLINE | ID: mdl-37995835

ABSTRACT

Aberrant cortical development is a key feature of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. Both genetic and environmental risk factors are thought to contribute to defects in cortical development; however, model systems that can capture the dynamic process of human cortical development are not well established. To address this challenge, we combined recent progress in induced pluripotent stem cell differentiation with advanced live cell imaging techniques to establish a novel three-dimensional neurosphere assay, amenable to genetic and environmental modifications, to investigate key aspects of human cortical development in real-time. For the first time, we demonstrate the ability to visualise and quantify radial glial extension and neural migration through live cell imaging. To show proof-of-concept, we used our neurosphere assay to study the effect of a simulated viral infection, a well-established environmental risk factor in neurodevelopmental disorders, on cortical development. This was achieved by exposing neurospheres to the viral mimic, polyinosinic:polycytidylic acid. The results showed significant reductions in radial glia growth and neural migration in three independent differentiations. Further, fixed imaging highlighted reductions in the HOPX-expressing outer radial glia scaffolding and a consequent decrease in the migration of CTIP2-expressing cortical cells. Overall, our results provide new insight into how infections may exert deleterious effects on the developing human cortex.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Virus Diseases , Humans , Neurogenesis , Cell Differentiation
3.
Brain ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092513

ABSTRACT

Herpes simplex virus encephalitis (HSE) is the leading cause of non-epidemic encephalitis in the developed world and, despite antiviral therapy, mortality and morbidity is high. The emergence of post-HSE autoimmune encephalitis (AE) reveals a new immunological paradigm in autoantibody-mediated disease. A reductionist evaluation of the immunobiological mechanisms in HSE is crucial to dissect the origins of post-viral autoimmunity and supply rational approaches to the selection of immunotherapeutics. Herein, we review the latest evidence behind the phenotypic progression and underlying immunobiology of HSE including the cytokine/chemokine environment, the role of pathogen-recognition receptors, T- and B-cell immunity and relevant inborn errors of immunity. Secondly, we provide a contemporary review of published patients with post-HSE AE from a combined cohort of 110 patients. Thirdly, we integrate novel mechanisms of autoimmunisation in deep cervical lymph nodes to explore hypotheses around post-HSE AE and challenge these against mechanisms of molecular mimicry and others. Finally, we explore translational concepts where neuroglial surface autoantibodies have been observed with other neuroinfectious diseases and those that generate brain damage including traumatic brain injury, ischaemic stroke and neurodegenerative disease. Overall, the clinical and immunological landscape of HSE is an important and evolving field, from which precision immunotherapeutics could soon emerge.

4.
PLoS One ; 17(11): e0278155, 2022.
Article in English | MEDLINE | ID: mdl-36449485

ABSTRACT

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57, FDR = 0.049) and gestational day 17 (fold change = 1.97, FDR = 0.0006). A linear regression analysis, which showed a decrease in gene expression with an increase in methylation in gestational day 17, supported findings from our enrichment analysis. Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


Subject(s)
Schizophrenia , Adult , Female , Pregnancy , Humans , Methylation , Schizophrenia/genetics , Family , Protein Processing, Post-Translational , Brain
5.
Circulation ; 146(10): 743-754, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35993236

ABSTRACT

BACKGROUND: Myocarditis is more common after severe acute respiratory syndrome coronavirus 2 infection than after COVID-19 vaccination, but the risks in younger people and after sequential vaccine doses are less certain. METHODS: A self-controlled case series study of people ages 13 years or older vaccinated for COVID-19 in England between December 1, 2020, and December 15, 2021, evaluated the association between vaccination and myocarditis, stratified by age and sex. The incidence rate ratio and excess number of hospital admissions or deaths from myocarditis per million people were estimated for the 1 to 28 days after sequential doses of adenovirus (ChAdOx1) or mRNA-based (BNT162b2, mRNA-1273) vaccines, or after a positive SARS-CoV-2 test. RESULTS: In 42 842 345 people receiving at least 1 dose of vaccine, 21 242 629 received 3 doses, and 5 934 153 had SARS-CoV-2 infection before or after vaccination. Myocarditis occurred in 2861 (0.007%) people, with 617 events 1 to 28 days after vaccination. Risk of myocarditis was increased in the 1 to 28 days after a first dose of ChAdOx1 (incidence rate ratio, 1.33 [95% CI, 1.09-1.62]) and a first, second, and booster dose of BNT162b2 (1.52 [95% CI, 1.24-1.85]; 1.57 [95% CI, 1.28-1.92], and 1.72 [95% CI, 1.33-2.22], respectively) but was lower than the risks after a positive SARS-CoV-2 test before or after vaccination (11.14 [95% CI, 8.64-14.36] and 5.97 [95% CI, 4.54-7.87], respectively). The risk of myocarditis was higher 1 to 28 days after a second dose of mRNA-1273 (11.76 [95% CI, 7.25-19.08]) and persisted after a booster dose (2.64 [95% CI, 1.25-5.58]). Associations were stronger in men younger than 40 years for all vaccines. In men younger than 40 years old, the number of excess myocarditis events per million people was higher after a second dose of mRNA-1273 than after a positive SARS-CoV-2 test (97 [95% CI, 91-99] versus 16 [95% CI, 12-18]). In women younger than 40 years, the number of excess events per million was similar after a second dose of mRNA-1273 and a positive test (7 [95% CI, 1-9] versus 8 [95% CI, 6-8]). CONCLUSIONS: Overall, the risk of myocarditis is greater after SARS-CoV-2 infection than after COVID-19 vaccination and remains modest after sequential doses including a booster dose of BNT162b2 mRNA vaccine. However, the risk of myocarditis after vaccination is higher in younger men, particularly after a second dose of the mRNA-1273 vaccine.


Subject(s)
COVID-19 , Myocarditis , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
Brain Behav Immun Health ; 24: 100486, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35856062

ABSTRACT

There is an intriguing association between winter births and subsequent increased risk of schizophrenia. However, little is known about the environmental risk factors that contribute this month-of-birth effect. The aims of this study were to carry out a systematic review and meta-analysis of studies investigating the month-of-birth effect in schizophrenia and to explore possible factors such as latitude, daylight and infections that could explain this epidemiological observation. Medline, Embase and the Cochrane Library were searched for articles published up to December 23, 2021. Study selection, data extraction and analysis were undertaken according to Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. Generic inverse-variance with random effects models were used to determine the risk ratios (RR) and 95% confidence intervals (CI) for each month-of-birth. Associations between variables latitude and daylight were investigated using linear regression and Kendall's rank correlation coefficients were calculated assess the relationship between monthly infections rates schizophrenia births. Ten studies were included in the meta-analysis encompassing 262,188 schizophrenia patients. We identified significantly higher number of schizophrenia births in December [1.04 (95%CI 1.00-1.08)], January [1.06 (95%CI 1.03-1.1)] and February [1.03 (95%CI 1.00-1.05)]. We did not find any association between latitude and the magnitude of the month-of-birth effect. On the other hand, we found a significant negative correlation between monthly severe enterovirus cases and schizophrenia births (tau -0.57, p = 0.0099) using data from Taiwan. This highlights a role for enterovirus infections in mediating the month-of-birth effect in schizophrenia and these results carry implications for disease prevention strategies.

7.
Nat Med ; 28(2): 410-422, 2022 02.
Article in English | MEDLINE | ID: mdl-34907393

ABSTRACT

Although myocarditis and pericarditis were not observed as adverse events in coronavirus disease 2019 (COVID-19) vaccine trials, there have been numerous reports of suspected cases following vaccination in the general population. We undertook a self-controlled case series study of people aged 16 or older vaccinated for COVID-19 in England between 1 December 2020 and 24 August 2021 to investigate hospital admission or death from myocarditis, pericarditis and cardiac arrhythmias in the 1-28 days following adenovirus (ChAdOx1, n = 20,615,911) or messenger RNA-based (BNT162b2, n = 16,993,389; mRNA-1273, n = 1,006,191) vaccines or a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive test (n = 3,028,867). We found increased risks of myocarditis associated with the first dose of ChAdOx1 and BNT162b2 vaccines and the first and second doses of the mRNA-1273 vaccine over the 1-28 days postvaccination period, and after a SARS-CoV-2 positive test. We estimated an extra two (95% confidence interval (CI) 0, 3), one (95% CI 0, 2) and six (95% CI 2, 8) myocarditis events per 1 million people vaccinated with ChAdOx1, BNT162b2 and mRNA-1273, respectively, in the 28 days following a first dose and an extra ten (95% CI 7, 11) myocarditis events per 1 million vaccinated in the 28 days after a second dose of mRNA-1273. This compares with an extra 40 (95% CI 38, 41) myocarditis events per 1 million patients in the 28 days following a SARS-CoV-2 positive test. We also observed increased risks of pericarditis and cardiac arrhythmias following a positive SARS-CoV-2 test. Similar associations were not observed with any of the COVID-19 vaccines, apart from an increased risk of arrhythmia following a second dose of mRNA-1273. Subgroup analyses by age showed the increased risk of myocarditis associated with the two mRNA vaccines was present only in those younger than 40.


Subject(s)
2019-nCoV Vaccine mRNA-1273/adverse effects , Arrhythmias, Cardiac/epidemiology , BNT162 Vaccine/adverse effects , ChAdOx1 nCoV-19/adverse effects , Myocarditis/epidemiology , Pericarditis/epidemiology , 2019-nCoV Vaccine mRNA-1273/immunology , Adolescent , Adult , BNT162 Vaccine/immunology , COVID-19/pathology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , England/epidemiology , Female , Humans , Length of Stay , Male , SARS-CoV-2/immunology , Vaccination/adverse effects , Young Adult
8.
Brain Commun ; 3(4): fcab275, 2021.
Article in English | MEDLINE | ID: mdl-34859219

ABSTRACT

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Maternal immune activation by infections during pregnancy is hypothesized to be a key environmental risk factor. However, little is known about how maternal immune activation contributes to schizophrenia pathogenesis. In this study, we investigated if maternal immune activation influences the expression of genes associated with schizophrenia in foetal mouse brains. We found that two sets of schizophrenia genes were downregulated more than expected by chance in the foetal mouse brain following maternal immune activation, namely those genes associated with schizophrenia through genome-wide association study (fold change = 1.93, false discovery rate = 4 × 10-4) and downregulated genes in adult schizophrenia brains (fold change = 1.51, false discovery rate = 4 × 10-10). We found that these genes mapped to key biological processes, such as neuronal cell adhesion. We also identified cortical excitatory neurons and inhibitory interneurons as the most vulnerable cell types to the deleterious effects of this interaction. Subsequently, we used gene expression information from herpes simplex virus 1 infection of neuronal precursor cells as orthogonal evidence to support our findings and to demonstrate that schizophrenia-associated cell adhesion genes, PCDHA2, PCDHA3 and PCDHA5, were downregulated following herpes simplex virus 1 infection. Collectively, our results provide novel evidence for a link between genetic and environmental risk factors in schizophrenia pathogenesis. These findings carry important implications for early preventative strategies in schizophrenia.

10.
Nat Med ; 27(12): 2144-2153, 2021 12.
Article in English | MEDLINE | ID: mdl-34697502

ABSTRACT

Emerging reports of rare neurological complications associated with COVID-19 infection and vaccinations are leading to regulatory, clinical and public health concerns. We undertook a self-controlled case series study to investigate hospital admissions from neurological complications in the 28 days after a first dose of ChAdOx1nCoV-19 (n = 20,417,752) or BNT162b2 (n = 12,134,782), and after a SARS-CoV-2-positive test (n = 2,005,280). There was an increased risk of Guillain-Barré syndrome (incidence rate ratio (IRR), 2.90; 95% confidence interval (CI): 2.15-3.92 at 15-21 days after vaccination) and Bell's palsy (IRR, 1.29; 95% CI: 1.08-1.56 at 15-21 days) with ChAdOx1nCoV-19. There was an increased risk of hemorrhagic stroke (IRR, 1.38; 95% CI: 1.12-1.71 at 15-21 days) with BNT162b2. An independent Scottish cohort provided further support for the association between ChAdOx1nCoV and Guillain-Barré syndrome (IRR, 2.32; 95% CI: 1.08-5.02 at 1-28 days). There was a substantially higher risk of all neurological outcomes in the 28 days after a positive SARS-CoV-2 test including Guillain-Barré syndrome (IRR, 5.25; 95% CI: 3.00-9.18). Overall, we estimated 38 excess cases of Guillain-Barré syndrome per 10 million people receiving ChAdOx1nCoV-19 and 145 excess cases per 10 million people after a positive SARS-CoV-2 test. In summary, although we find an increased risk of neurological complications in those who received COVID-19 vaccines, the risk of these complications is greater following a positive SARS-CoV-2 test.


Subject(s)
BNT162 Vaccine/adverse effects , Bell Palsy/epidemiology , COVID-19/pathology , ChAdOx1 nCoV-19/adverse effects , Guillain-Barre Syndrome/epidemiology , Hemorrhagic Stroke/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/immunology , Bell Palsy/virology , COVID-19/diagnosis , COVID-19/immunology , ChAdOx1 nCoV-19/immunology , England/epidemiology , Female , Guillain-Barre Syndrome/virology , Hemorrhagic Stroke/virology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , SARS-CoV-2/immunology , Scotland/epidemiology , Young Adult
11.
Ann Neurol ; 90(3): 455-463, 2021 09.
Article in English | MEDLINE | ID: mdl-34279044

ABSTRACT

OBJECTIVE: The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis. METHODS: We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights. RESULTS: We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10-3 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10-38 and rho = -0.52, p = 7.01 × 10-22 , for rs231735 and rs231770, respectively). INTERPRETATION: The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.


Subject(s)
Genetic Variation/physiology , Genome-Wide Association Study/methods , Immunity, Innate/physiology , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Polymorphism, Single Nucleotide/physiology , Adult , Age of Onset , Female , Humans , Male , Middle Aged , Myasthenia Gravis/diagnosis
12.
J Psychiatr Res ; 139: 125-131, 2021 07.
Article in English | MEDLINE | ID: mdl-34058651

ABSTRACT

Maternal infection is thought to increase the risk of non-affective psychosis including schizophrenia. However, observational studies have produced conflicting results and little is known about the importance of timing of infection in mediating subsequent risk. In this study, we carried out a meta-analysis of observational studies to investigate the risk of maternal infection and subsequent risk of non-affective psychosis. Using seven cohort studies, we found that maternal infection during gestation increased the risk of non-affective psychosis [relative risk (RR): 1.28 (95% CI:1.05-1.57, p = 0.02, I2 = 36%)]. A subgroup analysis identified that there was greater risk for schizophrenia alone [RR: 1.65 (95% CI:1.23-2.22, p = 0.0008, I2 = 0%)]. In addition, infection during the second trimester resulted in increased risk [RR: 1.63 (95% CI:1.07-2.48, p = 0.02, I2 = 7%)], whilst risk during the first and third trimesters did not meet statistical significance. This study highlights maternal infection in gestation as an important environmental risk factor for non-affective psychosis and our findings carry important implications for future disease prevention strategies.


Subject(s)
Psychotic Disorders , Schizophrenia , Cohort Studies , Female , Humans , Observational Studies as Topic , Pregnancy , Psychotic Disorders/epidemiology , Psychotic Disorders/etiology , Risk Factors , Schizophrenia/epidemiology
13.
J Cereb Blood Flow Metab ; 41(9): 2423-2438, 2021 09.
Article in English | MEDLINE | ID: mdl-33730931

ABSTRACT

The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.


Subject(s)
Cerebrovascular Disorders/physiopathology , Extracellular Matrix/physiology , Proteomics/methods , Adult , Animals , Disease Models, Animal , Humans , Male , Mice
14.
Nat Genet ; 51(7): 1082-1091, 2019 07.
Article in English | MEDLINE | ID: mdl-31253980

ABSTRACT

Most candidate drugs currently fail later-stage clinical trials, largely due to poor prediction of efficacy on early target selection1. Drug targets with genetic support are more likely to be therapeutically valid2,3, but the translational use of genome-scale data such as from genome-wide association studies for drug target discovery in complex diseases remains challenging4-6. Here, we show that integration of functional genomic and immune-related annotations, together with knowledge of network connectivity, maximizes the informativeness of genetics for target validation, defining the target prioritization landscape for 30 immune traits at the gene and pathway level. We demonstrate how our genetics-led drug target prioritization approach (the priority index) successfully identifies current therapeutics, predicts activity in high-throughput cellular screens (including L1000, CRISPR, mutagenesis and patient-derived cell assays), enables prioritization of under-explored targets and allows for determination of target-level trait relationships. The priority index is an open-access, scalable system accelerating early-stage drug target selection for immune-mediated disease.


Subject(s)
Arthritis, Rheumatoid/genetics , Drug Discovery , Gene Regulatory Networks , Genome, Human , Immunity, Innate/genetics , Quantitative Trait Loci , Selection, Genetic , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Gene Expression Regulation , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
15.
Ann Neurol ; 83(6): 1162-1173, 2018 06.
Article in English | MEDLINE | ID: mdl-29740872

ABSTRACT

OBJECTIVE: Early diagnosis and treatment initiation significantly influence long-term disability outcome in multiple sclerosis (MS). We aimed at identifying prodromal symptoms of MS in primary care settings. METHODS: This was a nested case-control study comparing the occurrence of various symptoms in MS patients versus controls at 0 to 2, 2 to 5, and 5 to 10 years before index date (first MS record). A total of 10,204 incident MS cases were identified within the United Kingdom Clinical Practice Research Datalink between January 1, 1987 and February 28, 2016 (median age = 47 years, interquartile range [IQR] = 39-57, females = 7,308 [71.6%]). Patients were matched to 39,448 controls with no MS record by sex, year of birth, general practitioner, and year of registration (age = 47 years, IQR = 39-56, females = 28,248 [71.6%]). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using conditional logistic regression. RESULTS: MS patients had significantly higher risk of presenting up to 10 years prior to index date with gastric, intestinal, urinary, and anorectal disturbances, anxiety, depression, insomnia, fatigue, headache, and various types of pain. MS risk progressively increased with each additional symptom presented (0-2 years: OR = 1.51, 95% CI = 1.47-1.55, p < 0.001; 2-5 years: OR = 1.29, 95% CI = 1.25-1.33, p < 0.001; 5-10 years: OR = 1.20, 95% CI = 1.15-1.26, p < 0.001). Sensitivity analyses in patients with age at index < 40 years and no neurological disturbances prior to symptoms of interest showed consistent results. INTERPRETATION: Various clinical disturbances precede MS diagnosis by several years, supporting a prodromal phase to the disease and improving our clinical knowledge of early MS. Integrating these symptoms in the diagnostic procedure may help earlier disease identification. Ann Neurol 2018.


Subject(s)
Anxiety/diagnosis , Early Diagnosis , Multiple Sclerosis/diagnosis , Primary Health Care , Prodromal Symptoms , Adult , Anxiety/rehabilitation , Case-Control Studies , Depression/rehabilitation , Female , Humans , Male , Middle Aged , Multiple Sclerosis/rehabilitation
16.
F1000Res ; 4: 80, 2015.
Article in English | MEDLINE | ID: mdl-26069729

ABSTRACT

BACKGROUND: We and others have shown a significant proportion of interventional trials registered on ClinicalTrials.gov have their primary outcomes altered after the listed study start and completion dates. The objectives of this study were to investigate whether changes made to primary outcomes are associated with the likelihood of reporting a statistically significant primary outcome on ClinicalTrials.gov. METHODS: A cross-sectional analysis of all interventional clinical trials registered on ClinicalTrials.gov as of 20 November 2014 was performed. The main outcome was any change made to the initially listed primary outcome and the time of the change in relation to the trial start and end date. FINDINGS: 13,238 completed interventional trials were registered with ClinicalTrials.gov that also had study results posted on the website. 2555 (19.3%) had one or more statistically significant primary outcomes. Statistical analysis showed that registration year, funding source and primary outcome change after trial completion were associated with reporting a statistically significant primary outcome . CONCLUSIONS:  Funding source and primary outcome change after trial completion are associated with a statistically significant primary outcome report on clinicaltrials.gov.

17.
F1000Res ; 3: 77, 2014.
Article in English | MEDLINE | ID: mdl-25075294

ABSTRACT

BACKGROUND: An important principle in the good conduct of clinical trials is that a summary of the trial protocol, with a pre-defined primary outcome, should be freely available before the study commences. The clinical trials registry ClinicalTrials.gov provides one method of doing this, and once the trial is registered, any changes made to the primary outcome are documented. The objectives of this study were: to assess the proportion of registered trials on ClinicalTrials.gov that had the primary outcome changed; to assess when the primary outcome was changed in relation to the listed study start and end dates and to assess whether the primary outcome change had any relation to the study sponsor. METHODS: A cross-sectional analysis of all interventional clinical trials registered on ClinicalTrials.gov as of 25 October 2012 was performed. The main outcome was any change made to the initially listed primary outcome and the time of the change in relation to the trial start and end date. FINDINGS: Our analysis showed that 28229 of 89204 (31.7%) registered studies had their primary outcome changed.  Industry funding was associated with all primary outcome changes, odds ratio (OR)= 1.36, 95% confidence interval (CI)=1.31-1.41, p<0.001; with primary outcome changes after study start date OR=1.37, 95% CI=1.32-1.42, p<0.001; with primary outcome changes after primary completion date OR=1.84, 95% CI=1.75-1.94, p<0.001 and with primary outcome changes after study completion date OR=1.82, 95% CI=1.73-1.91, p<0.001.  Conclusions A significant proportion of interventional trials registered on ClinicalTrials.gov have their primary outcomes altered after the listed study start and completion dates. These changes are associated with funding source.

18.
J Hum Genet ; 59(4): 211-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24522295

ABSTRACT

There is little understanding of how genetic variants discovered in recent genome-wide association studies are involved in the pathogenesis of multiple sclerosis (MS). We aimed to investigate which chromatin states and cell types explain genetic risk in MS. We used genotype data from 1854 MS patients and 5164 controls produced by the International Multiple Sclerosis Genetics Consortium and Wellcome Trust Case Control Consortium. We estimated the proportion of phenotypic variance between cases and controls explained by cell-specific chromatin state and DNase I hypersensitivity sites (DHSs) using the Genome-wide Complex Trait Analysis software. A large proportion of variance was explained by single-nucleotide polymorphisms (SNPs) in strong enhancer (SE) elements of immortalized B lymphocytes (5.39%). Three independent SNPs located within SE showed suggestive evidence of association with MS: rs12928822 (odds ratio (OR)=0.81, 95% confidence interval (CI)=0.73-0.89, P=2.48E-05), rs727263 (OR=0.75, 95% CI=0.66-0.85, P=3.26E-06) and rs4674923 (OR=0.85, 95% CI=0.79-0.92, P=1.63E-05). Genetic variants located within DHSs of CD19+ B cells explained the greatest proportion of variance. Genetic variants influencing the risk of MS are located within regulatory elements active in immune cells. This study also identifies a number of immune cell types likely to be involved in the causal cascade and that carry important implications for future studies of therapeutic design.


Subject(s)
Genetic Variation , Multiple Sclerosis/genetics , Regulatory Sequences, Nucleic Acid , B-Lymphocytes/immunology , Case-Control Studies , Chromatin/metabolism , Deoxyribonuclease I/metabolism , Enhancer Elements, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Hep G2 Cells , Humans , Keratinocytes/immunology , Multiple Sclerosis/immunology , Polymorphism, Single Nucleotide , Risk Factors
19.
Hum Mol Genet ; 23(4): 942-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24092328

ABSTRACT

Genome-wide association studies (GWASs) have shown that approximately 60 genetic variants influence the risk of developing multiple sclerosis (MS). Our aim was to identify the cell types in which these variants are active. We used available data on MS-associated single nucleotide polymorphisms (SNPs) and deoxyribonuclease I hypersensitive sites (DHSs) from 112 different cell types. Genomic intervals were tested for overlap using the Genomic Hyperbrowser. The expression profile of the genes located nearby MS-associated SNPs was assessed using the software GRAIL (Gene Relationships Across Implicated Loci). Genomic regions associated with MS were significantly enriched for a number of immune DHSs and in particular T helper (Th) 1, Th17, CD8+ cytotoxic T cells, CD19+ B cells and CD56+ natural killer (NK) cells (enrichment = 2.34, 2.19, 2.27, 2.05 and 1.95, respectively; P < 0.0001 for all of them). Similar results were obtained when genomic regions with suggestive association with MS and additional immune-mediated traits were investigated. Several new candidate MS-associated genes located within regions of suggestive association were identified by GRAIL (CARD11, FCRL2, CHST12, SYK, TCF7, SOCS1, NFKBIZ and NPAS1). Genetic data indicate that Th1, Th17, cytotoxic T, B and NK cells play a prominent role in the etiology of MS. Regions with confirmed and suggestive association have a similar immunological profile, indicating that many SNPs truly influencing the risk of MS actually fail to reach genome-wide significance. Finally, similar cell types are involved in the etiology of other immune-mediated diseases.


Subject(s)
Multiple Sclerosis/genetics , Deoxyribonucleases/chemistry , Epistasis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Hep G2 Cells , Humans , Polymorphism, Single Nucleotide
20.
BMC Med Genomics ; 6: 45, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24171864

ABSTRACT

BACKGROUND: A wealth of nuclear receptor binding data has been generated by the application of chromatin immunoprecipitation (ChIP) techniques. However, there have been relatively few attempts to apply these datasets to human complex disease or traits. METHODS: We integrated multiple oestrogen receptor alpha (ESR1) ChIP datasets in the Genomic Hyperbrowser. We analysed these datasets for overlap with DNase I hypersensitivity peaks, differentially expressed genes with estradiol treatment and regions near single nucleotide polymorphisms associated with sex-related diseases and traits. We used FIMO to scan ESR1 binding sites for classical ESR1 binding motifs drawn from the JASPAR database. RESULTS: We found that binding sites present in multiple datasets were enriched for classical ESR1 binding motifs, DNase I hypersensitivity peaks and differentially expressed genes after estradiol treatment compared with those present in only few datasets. There was significant enrichment of ESR1 binding present in multiple datasets near genomic regions associated with breast cancer (7.45-fold, p = 0.001), height (2.45-fold, p = 0.002), multiple sclerosis (5.97-fold, p < 0.0002) and prostate cancer (4.47-fold, p = 0.0008), and suggestive evidence of ESR1 enrichment for regions associated with coronary artery disease, ovarian cancer, Parkinson's disease, polycystic ovarian syndrome and testicular cancer. Integration of multiple cell line ESR1 ChIP datasets also increases overlap with ESR1 ChIP-seq peaks from primary cancer samples, further supporting this approach as helpful in identifying true positive ESR1 binding sites in cell line systems. CONCLUSIONS: Our study suggests that integration of multiple ChIP datasets can highlight binding sites likely to be of particular biological importance and can provide important insights into understanding human health and disease. However, it also highlights the high number of likely false positive binding sites in ChIP datasets drawn from cell lines and illustrates the importance of considering multiple independent experiments together.


Subject(s)
Chromatin Immunoprecipitation/methods , Computational Biology/methods , Deoxyribonuclease I/metabolism , Estrogen Receptor alpha/genetics , Genetic Predisposition to Disease , Transcriptome , Binding Sites , Female , Genome-Wide Association Study , Humans , Male , Neoplasms/genetics , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...